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ABSTRACT 
An analysis of a time-dependent magneto-convective heat-mass transport upon a stretching sheet in a saturated permeable 
medium with the magnetic field are discussed. The governing partial differential equations (PDEs) are transformed into 
ordinary differential equations (ODEs) by imposing the similarity transformation. The transformed governing ODEs are 
solved numerically using finite difference method by shooting technique in ODE45 MATLAB software. The numerical 
results are shown graphically and tabular form performing the impacts of several non-dimensional parameters/numbers 
entering into the current problem.  With an increase in the values of the Darcy number and magnetic force parameter 
reduction in the fluid velocity. The concentration and the temperature of the fluid decrease for moving values of the Schmidt 
number and the Prandtl number, respectively. The mass transfer rate increases by about 46%, due to increasing the Schmidt 
number (0.5-1.0).  The heat transfer rate increases by about 22% due to improving the Prandtl number (0.71-1.0). The local 
skin-friction coefficient decreases by about 24% and 21% due to improving the magnetic force parameter (1.5-3.0) and 
Darcy number (0.6-1.6), respectively.  
 
Keywords: MHD, heat and mass transfer, stretching surface, permeable medium.  

1. Introduction  
    The phenomenon of MHD free heat transfer and mass 
transfer on an embedded vertical permeable sheet has 
attracted the interest of many research scholars due to its 
various applications in technology and science. The free 
convection of mass transfer of viscous fluid passing upon 
a permeable medium has been studied by Yamato et al. [1]. 
The combined natural and forced convection flow about 
an inclined surface in a permeable medium has been 
explained by Cheng [2]. The effect of heat and mass 
transfer upon MHD unsteady convection flow through an 
inclined plate by using the finite difference method has 
been analyzed by Kumar et al [3]. Gupta and Gupta [4] 
examined the effect of the suction or blowing on heat and 
mass transfer above a stretching plate. The effects of a 
magnetic field and thermocapillary on a time-dependent 
elastic stretching sheet in a thin liquid film have been 
discussed by Noor and Hashim [5]. Using the homotopy 
analysis method, Wang and Pop [6] presented a solution to 
the unsteady stretching flow problem in the case of finite 
thickness. The influence of thermal radiation on a time-

dependent convective heat transfer flow through a 
stretching sheet in a saturated permeable medium has been 
investigated by Khader and Megahed [7]. In their 

simulation, they solved the resulting system of algebraic 
equations by using the finite difference method. Also, 
Khader and Megahed [7] considered only energy and 
momentum equations. Hasanuzzaman et al [8] extended 
Khader and Megahed [7] problems by considering energy, 
concentration, and momentum equations. They also 
applied the shooting technique to solve the non-linear 
ODEs. Now, we extended Hasanuzzaman et al [8] by 
considering the magnetic force term. 

The outcome of this study is to estimate a time-
dependent magneto-convective heat-mass transport 
upon a stretching sheet in a saturated porous medium. 
The current research is to extend the works of 
Hasanuzzaman et al [8] by considering the effects of the 
magnetic force parameter. The impacts of the thermo-
physical parameters on the flow and heat-mass transport 
characteristics are discussed in detail. Additionally, 
tabular forms are shown the effects of nin-dimensional 
parameters or numbers on the Nusselt number, 
Sherwood number, and local skin friction coefficient. 
 
2. Governing Equations 
     Let us consider a time-dependent Newtonian fluid 
flow in a thin liquid film upon a stretching surface 
including a magnetic force. Figure 1 shows the physical 
model and coordinate systems. The continuous surface 
has a velocity profile U(x, t) and temperature and 
concentration distributions are ( )txTs , and ( )txCs , , 
respectively in its plane parallel to the x-axis at y = 0. A 
uniform thin liquid film thickness ( )th lies on the 
horizontal surface. 
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The governing equations for the present problem are 
given by 
The continuity equation- 
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The energy conservation equation- 
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The concentration equation- 
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where the velocity components along the x-axis and y-
axis are u and v, respectively. B is the magnetic field, 
µ  is the fluid viscosity, ρ is the fluid density, K is the 
permeability of the permeable medium surface, C  is the 
fluid concentration, T is the fluid temperature,  is the 
time,  is the thermal conductivity, pC is the specific 

heat at constant pressure, and ∗D is the coefficient of 
mass diffusion.  
The boundary conditions for this problem are given by 
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where U  is the surface velocity at 0=y . The liquid 
film thickness is h . The plate continually goes with the 
velocity U in the −x direction is given by 
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where the positive constants a  are and b  with 
dimension ( ) 1−time .  
The forms of the surface temperature, sT  and 
concentration, sC  of the stretching plate, vary with the 
distance  and time  given by 
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where refC  and refT are  the constant reference 

concentration and temperature, respectively and 0C  and 

0T  are the concentration and temperature, respectively 

at the slit for all 
a

t 1
〈 . 

Now, upon introduce the similarity transformations: 

( ) yatb 1
2
12

1

1 −−−







= β

µ
ρη                                      ( )10  

( ) ( )ηηfatbxu 11 −−=                                                 ( )11  

( ) ηβ
ρ
µ fatbv 2

12
1

1 −−







−=                                     ( )12  

( ) ( )ηθ
µ

ρ
2
32

0 1
2

−−









−= atxbTTT ref                         ( )13  

( ) ( )ηφ
µ

ρ
2
32

0 1
2

−−









−= atxbCCC ref                      ( )14  

Now, the dimensionless thin film thickness is β . This 
film thickness is introduced by Noor and Hashim [5].   
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Using the equations from ( )7  to ( )15 , the equations 
( ) ( )41 −  become 
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The transformed boundary conditions are given by: 
                                                               
( ) ( ) ( ) ( ) 10,10,10,00 ==== φθηff                          ( )19  

( ) ( ) ( ) ( )
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b
aS =  is the unsteadiness parameter, 
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is the Prandtl number, 2βγ =  is the dimensionless film 

thickness, ( )
bk
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Magnetic force parameter is .
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3. Physical Parameters 
    The physical parameters for this present problem are 
given by: 
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where fC is the local skin-friction coefficient, xNu   is 

the local Nusselt number, xSh is the local Sherwood 

number  and 
µ

ρ x
x

U
=Re  is the local Reynolds 

number. 
  
4. Numerical Analysis 

    The main purpose of this research is to use the FDM 

(Finite Difference Methods) for solving the couple 

ODEs ( ) ( )1816 −  associated with the boundary 

conditions ( ) ( ).2019 −  This type of method is examined 

for efficiency and accuracy in solving different 

problems (Ali et al. [9] and Cheng and Liu [10]. The 

domain location of the solution is discretized into FDMs 

(Finite Difference Methods). The systems of equations 

( ) ( )1816 − can be rewritten by using the transformation 
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subject to the boundary conditions: 

( ) ( ) ( ) ( ) 10,10,10,00 ==== φθvf                            ( )25  

( ) ( ) ( ) ( )
2

1,01',01',01' Sfv ==== φθ                      ( )26  

Let us consider the grid size in −η direction is 

,1,0
N

h =∆〉=∆ ηη with ihi =η  for .,.....,1,0 Ni =  

Define ( ) ( )iiii ff ηθθη == ,   and ( ).ii ηφφ =  
Let the numerical values of θ,f and φ  are iiF θ, and 

iφ  at the thi −  node respectively. We take: 

h
vv

v
h

ff
f ii

i
ii

i 2
',

2
' 1111 −+−+ −

=
−

=                  

hh
ii

i
ii

i 2
',

2
' 1111 −+−+ −

=
−

=
φφ

φ
θθ

θ                    ( )27          

2
11

2
11 2

'',
2

''
hh

vvv
v iii

i
iii

i
−+−+ +−

=
+−

=
θθθ

θ  

2
11 2

''
h

iii
i

−+ +−
=

φφφ
φ                                     ( )28  

the system of ODES ( ) ( )2421 −  is discretized in space 
by applying the FDM which is the main step. We 
substitute from ( )27  and ( )28  into ( ) ( )2421 − and ignore 
the truncation errors. Then ( ),,.....,1,0 Ni =  the resulting 
algebraic equations take the form: 
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Also, the boundary conditions are 

0,0,0,1,1,1 000 ====== NNNFF φθφθ         ( )33  
The system of equations ( ) ( )3229 − is a nonlinear system 
of algebraic equations iiF θ,  and .iφ  We have solved 
these equations by applying the Newton iteration 
method with the help of MATLAB ODE45 software. 
 
5. Results and Discussions 
    The time-dependent magneto-convective heat-mass 
transport upon a stretching sheet in a saturated 
permeable medium has been investigated numerically. 
The transformed initial value problems (17)–(19) 
including the boundary conditions (20)–(21) are solved 
numerically using shooting technique with “ODE45 
MATLAB” software. This temperature, velocity, and 
concentration distributions are displayed in Figs. 2-8 for 
separate values of the non-dimensional numbers or 
parameters. The constant values for different parameters 
or numbers are chosen 

5.0,5.0,71.0Pr,6.0,16 ===== ScMDaγ and 
.8.0=S  

 
5.1 Effect of the magnetic force parameter ( )M  on 
the velocity profile 
      Fig. 2 shows the effect of the magnetic force 
parameter (M) on the velocity profile. Increasing values 
of the magnetic force parameter the fluid velocity 
decreases. A resistive type of force generates rising 
values of the magnetic force such as a drag force being 
created. This drag type of force is said to be Lorentz 
force. In the computational domain, the Lorentz force 
obstructs the fluid velocity. So, the fluid would not 
move freely. Therefore, the velocity of the fluid reduces 
for growing values of the magnetic force parameter 
which is a physical phenomenon. 
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                    Fig.2 Velocity profile for M  

 
5.2 Effect of the Darcy number ( )Da  on the velocity, 
temperature and concentration profiles 
      Fig. (3-5) demonstrates the effect of the Darcy 
parameter (Da) on the velocity, temperature, and 
concentration profiles. It is found from fig.3 that the 
velocity lessens as the Darcy parameter improves along 
the plate and the reverse is true away from the plate. It 
is seen from fig.4 that the fluid temperature increases 
for increasing values of the Darcy number. Also, it is 
observed from fig.5 that with uplifting values of the 
Darcy number the fluid concentration increases. This is 
because the permeable medium produces a obstruct type 
of force that reduces fluid velocity and increases fluid 
temperature and concentration. 
5.3 Effect of the Prandtl number ( )Pr on the         
temperature profile  
        The impact of Prandtl number ( )Pr  on the 
temperature distribution is shown in Fig.6. The Prandtl 
number is inversely proportionate to the thermal 
conductivity. The thermal conductivity reduces for 
rising values of the Prandtl number. For this reason, the 
heat transfer rate improves. Hence, the fluid temperature 
decrease. The higher Prandtl number has relatively a 
lower thermal conductivity. It lessens heat conduction 
and so, the fluid temperature diminishes. 
5.4 Effect of the Schmidt number ( )Sc  on the     
concentration profile 
       Fig.7 shows the impact of the Schmidt 
number ( )Sc  on the concentration distribution. We 
know that the Schmidt number is inversely 
proportional to the molecular (species) diffusivity. From 
Fig.7 it is seen that for increasing values of Sc, the 
concentration boundary layer becomes thinner. This 
leads to reducing the concentration profiles. Physically, 
molecular diffusivity lessens due to improving in the 
magnitude of Sc. For that reason, the species 
concentration is lower for large values of the Schmidt 
number and higher for small values of the Schmidt 
number. 
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5.5 Effect of the unsteadiness parameters ( )S  on the 
velocity, temperature and concentration profiles 
      The impact of the unsteadiness parameter ( )S   on 
the velocity, the temperature, and the concentration 
profiles are shown in Figs. 8, 9, and 10, respectively. It 
can be concluded from Fig. 8 that the fluid velocity 
improves for rising values of the unsteadiness parameter 
S. The same behavior can be found for the temperature 
and concentration profiles when the S increases in Fig. 9 
and 10. 

Fig.3 Velocity profile for Da  

 

Fig.6 Temperature profile for Pr  

 

Fig.7 Concentration profile for Sc  

 

Fig.4 Temperature profile for Da  

 

Fig.5 Concentration profile for Da  
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6. Skin friction coefficient, heat and mass transfer 
rates 
     Tables 1 to 4 represent the local skin friction 
coefficient, heat and mass transfer rates for several 
values of the non-dimensional numbers or parameters It 
can be seen from Tables 1 and 2 that the local skin 
friction coefficient increases for rising values of the 
Darcy number and magnetic force parameter. For this 
reason, the fluid velocity decreases. From Table 3, it can 
be concluded that the heat transfer rate increases for 
moving values of the Prandtl number. Hence, the fluid 
temperature decrease for rising values of the Prandtl 
number. With rising values of the Schmidt number, the 
mass transfer rate enhancement is displayed in Table 4. 
Therefore the fluid concentration decreases for moving 
values of the Schmidt number. 
 
Table 1: Effect of Darcy number ( )Da   

Da  ( )0''f  ( )0'θ−  ( )0'φ−  

0.5 -5.342 4.867 2.558 

2.0 -6.910 4.691 2.460 

4.0 -8.577 4.534 2.379 

Table 2:  Effect of magnetic force parameter (M) 
M  ( )0''f  ( )0'θ−  ( )0'φ−  

0.5 -6.910 4.691 2.460 

1.5 -7.048 4.691 2.460 

3.0 -7.242 4.691 2.460 

4.0 -7.363 4.691 2.460 

 
Table 3:  Effect of Prandtl number ( )Pr   

Pr  ( )0''f  ( )0'θ−  ( )0'φ−  

0.71 -6.910 4.691 2.460 

1.0 -6.910 5.701 2.460 
7.0 -6.910 16.681 2.460 

 

Table 4:  Impact of Schmidt number ( )Sc   

Sc  ( )0''f  ( )0'θ−  ( )0'φ−  

0.22 -6.910 4.691 2.460 

0.67 -6.910 4.691 4.538 

1.0 -6.910 4.691 5.703 

 
7. Conclusions 
      The time-dependent magneto-convective heat-mass 
transport upon a stretching sheet in a saturated 
permeable medium has been investigated numerically. 
The following remarks may be drawn: 

• The fluid velocity reduces for moving 
values of the unsteadiness parameter, 
magnetic force parameter, and Darcy 
number. 

• The temperature of the fluid decreases for 
increasing values of the Prandtl number. 

• Increasing values of the Schmidt number 
the concentration of fluid diminishes. 

• With moving values of the magnetic force 
parameter (1.5-3.0) and Darcy number 
(0.6-1.6) the local skin-friction coefficient 
decreases by about 24% and 21%, 
respectively. 

• The heat transfer rate improves by about 
22% for rising values of the Prandtl 
number (0.71-1.0).  

• improving values of the Schmidt number 
(0.5-1.0) the mass transfer rate 
improvement by about 46%.  

The outcome of this paper may be helpful for 
geothermal extraction, chemical processing equipment, 
polymer processing, crystal growing, pollution of 
groundwater, tinning of copper wires, reactor 
fluidization, geophysical thermal insulation, welding, 
etc.  
 
 
 
 
 

Fig.10 Concentration profile for S 

 

Fig.8 Velocity profile for S 

 

Fig.9 Temperature profile for S 
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NOMENCLATURE 

u  velocity component along the x-axis 
v  velocity component along the y-axis  
T  temperature of fluid 

C   fluid concentration 
sT  surface temperature  

sC  surface concentration    

refT  reference temperature  

refC  reference concentration 

0T  temperature at the slit 

0C  concentration at the slit 
U(x,t) uniform surface velocity 
( )th  thin liquid film thickness 
α  thermal diffusivity 
β  fluid density 
µ  dynamic viscosity 
υ  kinematic viscosity 

K  permeability of surface 
*D  coefficient of mass diffusion 
pC  specific heat at constant pressure   

η  similarity variable 
( )η'f  dimensionless velocity  
( )ηθ  dimensionless temperature 
( )ηφ  dimensionless concentration 
Sc  Schmidt number 
Pr  Prandtl number 
M  Magnetic force parameter 
k  thermal conductivity 
t  time 

Da  Darcy number 
fC  local skin-friction coefficient  

xNu  local Nusselt number 

xSh  local Sherwood number 

xRe  local Reynolds number  

( )0''f  local skin friction coefficient  

( )0'θ  heat transfer rate 
( )0'φ  mass transfer rate 
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